LOYAL EDUCATION

MATHEMATICS

Result Oriented

(NDA & JEE MAINS)

Introduction of Surds

Definitions:

1. **Surd**: Any number which is in the form of \sqrt{n} (nth root of a) where 'n' is a natural and 'a' a rational number which is not the nth root of any natural number is called a surd (or) or a radical.

Ex: $\sqrt{2}$, $3\sqrt{3}$, $4\sqrt{5}$ etc.

Note:

- * 'n' is called the order of the surd.
- * 'a' is called the radicand of the surd.
- * \sqrt{n} is called the radical of the surd.
- * Every surd has a rational part and an irrational part.
- * All perfect squares and perfect cubes are not surds.
- 2. Simple Surd: Any surd whose rational part in unity (one) is called a simple surd.

Ex: $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$ etc.

Note:

- * Simple surd is also called a 'Pure surd'.
- 3. Mixed Surd: Any surd whose rational part is not unity (one) is called a mixed surd.

Ex: $2\sqrt{2}$, $3\sqrt{5}$, $2/3\sqrt{2}$ etc.

- * Mixed surd is also called an impure surd.
- 4. Monomial Surd: Any surd which has atleast one term is called a monomial surd.

Ex: $\sqrt{2}$, $3\sqrt{3}$, $2\sqrt{2}$, $3\sqrt{3}$ etc.

Note:

- * Every simple surd and a mixed surd is called a monomial surd.
- 5. Binomial Surd: Any surd which is a combination of two surds is called a binomial surd.

Ex: $\sqrt{2} + \sqrt{3}$, $3\sqrt{3} + \sqrt{2}$ etc.

*LOYAL EDUCATION

MATHEMATICS

Result Oriented

(NDA & JEE MAINS)

- 6. **Quadratic Surds**: Any surd whose order is 2 is called a quadratic surd. Ex: $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$ etc.
- 7. <u>Cubic Surd</u>: Any surd whose order is 3 is called a cubic surd. Ex: $\sqrt[3]{2}$, $\sqrt[3]{3}$, $\sqrt[3]{5}$, $\sqrt[3]{7}$ etc.
- 8. <u>Similar or Like Surds</u>: Surds whose irrational parts are the same are called like surds.

Note:

- * Like surds can be added.
- * Like surds can be subtracted.
- * Like surds can be divided.
- * Like surds can be multiplied.
- 9. <u>Dissimilar or Unlike Surds</u>: Surds whose irrational parts are not same are called unlike surds.

Note:

- * Unlike surds cannot be added.
- * Unlike surds cannot be subtracted.
- * Unlike surds can be multiplied
- * Unlike surds can be divided.
- 10. <u>Rationalisation</u>: Any procedure in which irrationals (surds) gets converted into rationals is called rationalisation.
- 11. <u>Rationalising Factor</u>: A number (surd) which converts an irrational into a rational through multiplication is called a rationalising factor.

Note:

Surd \sqrt{a} $\eta\sqrt{\alpha}$ $\sqrt{a+b}$ $a-\sqrt{b}$ $\sqrt{a}+\sqrt{b}$ $m\sqrt{a}+n\sqrt{b}$ **Rationalising factor**

 \sqrt{a} \sqrt{a} \sqrt{a} -b $a+\sqrt{b}$ \sqrt{a} - \sqrt{b} $m\sqrt{a}$ - $n\sqrt{b}$